
               

JOURNAL OF COMPUTATIONAL PHYSICS142,80–108 (1998)
ARTICLE NO. CP985911

The Black Box Multigrid Numerical
Homogenization Algorithm

J. David Moulton, Joel E. Dendy Jr., and James M. Hyman

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E-mail: moulton@lanl.gov

Received March 31, 1997; revised December 12, 1997

In mathematical models of flow through porous media, the coefficients typically
exhibit severe variations in two or more significantly different length scales. Con-
sequently, the numerical treatment of these problems relies on ahomogenizationor
upscalingprocedure to define an approximate coarse-scale problem that adequately
captures the influence of the fine-scale structure. Inherent in such a procedure is
a compromise between its computational cost and the accuracy of the resulting
coarse-scale solution. Although techniques that balance the conflicting demands of
accuracy and efficiency exist for a few specific classes of fine-scale structure (e.g.,
fine-scale periodic), this is not the case in general. In this paper we propose a new,
efficient, numerical approach for thehomogenizationof the permeability in models of
single-phase saturated flow. Our approach is motivated by the observation that mul-
tiple length scales are captured automatically by robust multilevel iterative solvers,
such as Dendy’sblack box multigrid. In particular, the operator-induced variational
coarsening in black box multigrid produces coarse-grid operators that capture the
essential coarse-scale influence of the medium’s fine-scale structure. We derive an
explicit local, cell-based, approximate expression for the symmetric, 2× 2 homog-
enized permeability tensor that is defined implicitly by the black box coarse-grid
operator. The effectiveness of this black box multigrid numerical homogenization
method is demonstrated through numerical examples.c© 1998 Academic Press

Key Words:porous media; permeability; numerical analysis; homogenization;
multigrid.

1. INTRODUCTION

The mathematical modeling of flow in porous media plays a fundamental role in the
forecasting of petroleum reservoir performance, groundwater supply, and subsurface con-
taminant flow. A critical underlying problem in the numerical treatment of these models is
the multiscale structure of heterogeneous geological formations. For example, the length
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scales observed in sedimentary laminae range from the millimeter scale upward, while the
simulation domain may be on the order of hundreds of meters [1]. As a result, a naive
fine-scale discretization of the mathematical model is computationally intractable, yet the
fine-scale variations of the model’s parameters (e.g., structure and orientation of laminae)
significantly affect the coarse-scale properties of the solution (e.g., average flow rates).
Thus, an accurate and efficient numerical treatment of these problems relies on ahomoge-
nizationor upscalingprocedure to define an approximate mathematical model in which the
effectiveproperties of the medium vary on a coarse scale suitable for efficient computation
while preserving certain coarse-scale properties of the fine-scale solution.

The inherent complexity of the homogenization process stems from the competing numer-
ical objectives of accuracy and efficiency. This competition, and the typical compromises
that result, are clearly demonstrated in the numerical treatment of the model for single-phase
saturated flow that is given by [2],

u = −K(r)∇ p, (1a)

∇ · u = Q(r), (1b)

where Eq. (1a) defines the Darcy velocityu and Eq. (1b) is a mass balance relation governing
the pressurep and the source-sink termQ(r). The permeabilityK(r) (which may be
interpreted as the mobility, hydraulic conductivity, or diffusivity) is, in general, highly
variable over a significant range of length scales.

The homogenization of the diffusion operator, and hence the permeability in Eq. (1), has
been studied extensively over the past 50 years [3–5]. A review of this literature for single-
phase saturated flow is given by Wen and G´omez-Hern´andez [6]. Unfortunately, existing
homogenization methods balance the numerical objectives of accuracy and efficiency only
over a small class of fine-scale structures. Consequently, the increasing use of geostatistical
techniques to infer physically meaningful fine-scale realizations of heterogeneous geolo-
gical structure from sparse and inherently multiscale measurement data [7, 8] has generated
a renewed interest in developing accurate and computationally efficient homogenization
procedures. In this study we make the common assumption that the fine-scale permeability
tensor is constant over each fine-scale cell,K(r) = Ki, j for all r ∈ Fi, j . The objective of a
homogenization procedure for Eq. (1) is to define an equivalent coarse-scale permeability
tensor that is constant over each coarse-scale cell,K̂(r) = K̂i, j for all r ∈ Ci, j , and that
preserves certain coarse-scale properties of the fine-scale solution (see Fig. 1).

The majority of existing homogenization methods of upscaling involve local fine-scale
computations and may be classified as eitheradditiveor Laplacian. Additive methods as-
sume that the equivalent coarse-scale permeability may be defined as an explicit function
of the fine-scale permeability. In fact, in one dimension,K̂ is given by the harmonic mean
[3, 5]. Although this specific result does not extend to the multidimensional case, there are
multidimensional heterogeneous structures for which additive upscaling is exact. For exam-
ple, in two dimensions, if the fine-scale permeability is given by a log-normal distribution,
thenK̂ is equal to the geometric mean [9]. These isolated theoretical results in combination
with the low computational cost of additive methods have enticed a number of researchers
to consider their widespread application (e.g., [10–13]). It was concluded that, in general,
there is no single rudimentary average that defines the exacteffectivepermeability [6].

This unfortunate result is a consequence of the interaction of different length scales. In
particular, a fine-scale isotropic permeability may give rise to a coarse-scale anisotropic
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FIG. 1. The permeability tensor of a porous medium is specified on each fine-scale cellFi, j and must be
upscaled or homogenized over each coarse-scale or computational cellCi, j .

flow [1, 14, 15]. For example, consider an essentially one-dimensional structure in two
dimensions, such as a layered medium. If the layers are aligned with the coordinate axis
then the flow perpendicular to the layers encounters an effective permeabilityK̂⊥ that is
given by the harmonic mean; however, flow that is parallel with the layers encounters an
effective permeabilityK̂|| that is given by the arithmetic mean. These means may differ
by orders of magnitude, and hence, in this case the effective anisotropic permeability is a
diagonal tensor. Moreover, if the layered structure were not aligned with the coordinate axis
the effective permeability would be a full tensor. At present, no additive homogenization
method is able to produce a full coarse-scale permeability tensor from a fine-scale isotropic
permeability; yet ignoring the potential coarse-scale anisotropy may lead to significant
errors in the simulated flows.

In contrast, most Laplacian homogenization methods are capable of constructing full
coarse-scale permeability tensors, even from an isotropic fine-scale permeability. These
methods use the solution of local fine-scale problems (i.e., solve Eq. (1) over a coarse-
scale cellCi, j ) to infer the coarse-scale permeability tensorK̂i, j of the medium. Ideally,
the boundary conditions for these local fine-scale problems would be consistent with the
global fine-scale solution, but the global fine-scale solution is unknown. Consequently,
artificial internal boundary conditions must be introduced, possibly corrupting the global
coarse-scale behavior of the solution. In an effort to minimize the influence of the artificial
boundary conditions G´omez-Hern´andez [16] defined the local fine-scale problems over a
larger domain composed of the computational cellCi, j and its surrounding skin (i.e., half
the annulus of neighboring coarse-scale cells). Although this method was found to perform
well for a variety of heterogeneous formations [17], it does not explicitly enforce the coarse-
scale permeability tensor to be symmetric and positive definite [14], and hence, it could
generate nonphysical flows.

Although the physical approach of Laplacian methods may seem ad hoc, in general,
they may be viewed as approximations of a rigorous two-scale asymptotic analysis. This
analysis, which has been presented by a number of authors [3, 4, 18], and for which an
excellent introduction is given by Holmes [19], is asymptotically exact for fine-scale peri-
odic and nearly periodic (i.e., nonuniformly periodic) problems. Specifically, for fine-scale
periodic media the homogenized permeability is a constant, symmetric, positive definite ten-
sor that may be expressed in terms of the solution of a single, local fine-scale problem with
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periodic boundary conditions. Bourgat [20] conducted a numerical study of this asymptotic
analysis, demonstrating that not only was the exact coarse-scale permeability tensor sym-
metric positive definite, but also that a dense tensor may result from a fine-scale isotropic
heterogeneity.

However, this asymptotic analysis is strictly valid only for media in which two distinct
length scales exist. Although this is true for some porous media (e.g., some sedimentary
laminae), it is not true in general. Durlofsky [14] investigated both the assumption of a
periodic fine-scale structure and the importance of two distinct length scales in numerical
simulations of flow through two-scale and multiscale heterogeneous structures. His results
indicate that this approach provides an excellent coarse-scale model of a porous medium,
provided that the computational scale is much larger than the fine-scale. Thus, the most
serious drawback of this approach and of Laplacian methods in general, is the computational
cost associated with the solution of local fine-scale flow problems on each computational
cell of the global domain.

One method that attempts to bridge the gap between the low computational cost of ad-
ditive methods and the superior accuracy of Laplacian methods is based on a numerical
multilevel renormalizationapproach [21]. Specifically, renormalization uses the analogy
of resistor networks to approximate an effective diagonal permeability tensor for a 2× 2
block of fine-scale cells. Applying this technique recursively, a finite number of steps re-
sults in an equivalent diagonal permeability tensor for each coarse-scale cellCi, j . Thus, the
computational cost is comparable to additive methods, and moreover, the method automat-
ically handles anisotropies that are aligned with the coordinate axes. However, there are
two significant weaknesses. First, the resistor analogy implicitly defines artificial boundary
conditions that impose one-dimensional flows in each of the coordinate directions. These
artificial boundary conditions are applied at each step in the recursion and therefore may
generate significant errors in the homogenized permeability [22]. Second, the homogenized
permeability is at most a diagonal tensor, and hence, for cases in which the principle axes
of diffusion are not aligned with the coordinate axes, the errors may be severe.

The objective of this research is to create new, computationally efficient numerical
homogenization techniques that capture the essential features of the rigorous asymptotic
analysis (i.e., symmetric positive definite tensor) and therefore lead to significant improve-
ments in the numerical modeling of multiscale problems in general. To this end, we make
the observation that equivalent multiscale issues arise in the development of multilevel it-
erative solvers. In particular, the efficiency of a multigrid method is tightly coupled to both
the coarse-grid operator’s approximation of the fine-grid operator’s coarse-scale influence
and the ability of the intergrid transfer operators to approximate the interaction of the vari-
ous scales. Early work in multigrid methods considered using simple averages, such as the
arithmetic and harmonic average, to define the coarse-grid operators, in conjunction with
standard intergrid transfer operators (i.e., full weight restriction, bilinear interpolation). Not
surprisingly, this approach was fragile, yielding convergence rates that were strongly de-
pendent on the fine-scale structure and variability of the permeability [23]. Considerable
research in this area eventually led to robust and efficient multigrid solvers, such as Dendy’s
black box multigrid [24, 25], strongly suggesting that the corresponding coarse-grid oper-
ators provide an excellent approximation of the homogenized operators.

Therefore, the objective of a multigrid numerical homogenization algorithm is to obtain an
approximation of the homogenized permeability tensor directly from the operator-induced
variationally coarsened coarse-grid operator, and most importantly, without solving a single
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elliptic problem. Specifically, consider successively applying operator-induced variational
coarsening to a fine-scale discretization of Eq. (1) until a coarse-scale suitable for numerical
simulation is reached. On this simulation-scale an approximation of the spatially dependent
homogenized permeability tensor may be obtained directly from the coarse-grid operators.
This approximate multigrid homogenized permeability,K̂(mg)(r), which is piecewise con-
stant on the simulation-scale cells, may be used to define the simulation-scale (coarse-scale)
model.

In Section 2.1 we review the motivation of variational coarsening and discuss its influential
role (Section 2.2) in theoperator-inducedvariational coarsening of black box multigrid.
In Section 2.3 we derive the key result: a local, explicit expression that defines the 2× 2
cell-based permeability tensor in terms of a given black box coarse-grid operator. The
homogenization algorithms that are based on this local result are presented in Section
3 for both the periodic and general case. Recently, Knapek [26, 27] addressed multilevel
homogenization in an alternative manner and we comment on his approach in Section 3.1. A
numerical study of the periodic case is presented in Section 4 that highlights the strengths of
the new black box multigrid homogenization method. Specifically, in Section 4.1, we verify
that this technique is exact for problems in which the permeability has an essentially one-
dimensional structure that is aligned with the coordinate axes. In this sense, it is comparable
to modern renormalization. But in addition (Section 4.2), we demonstrate that this technique
provides an excellent approximation of the homogenized permeability tensors that appear
in Bourgat’s numerical study of truly two-dimensional problems, including the computation
of a dense tensor that arises from a fine-scale isotropic problem.

2. HOMOGENIZATION AND BLACK BOX MULTIGRID

To motivate the derivation of our key result, Theorem 2.1, we first review variational
coarsening and then discuss the operator-induced variational coarsening that is employed
in black box multigrid. We assume that the reader is familiar with the basic elements of a
multigrid iterative algorithm, which are introduced in [28] and are covered in detail by a
number of researchers (e.g., [29, 30]).

2.1. Variational Coarsening

A crucial aspect of any multigrid algorithm is the definition of the coarse grid operators,

Lk = discrete operator on gridk, k = 1, 2, . . . , (number of grids) − 1

and the intergrid transfer operators,

I k
k−1 = interpolation operator, grid (k − 1) → grid k

Jk−1
k = restriction operator, grid k → grid (k − 1).

Variational coarsening offers one means of definingLk−1 in terms ofLk, Jk−1
k , and I k

k−1.
The development is given by Brandt [31] and follows naturally upon the restatement of the
linear system,

Lk pk = Qk, (2)
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as an equivalent minimization problem. Specifically, becauseLk is symmetric positive
definite we have

pk = min
φ∈<N×M

{
8(φ) = 1

2
φT Lkφ − QT

k φ

}
. (3)

If ϕk is an approximate solution of Eq. (3), obtained by sufficiently many relaxations of
Eq. (2), the associated errorek = pk − ϕk is smooth. Therefore, the objective is to use a
coarse-grid approximation of the fine-grid error,ek = I k

k−1ek−1. This is accomplished by
writing

pk = ϕk + I k
k−1ek−1,

suggesting that we chooseek−1 to minimize8(ϕk + I k
k−1ek−1). In this case, the equivalent

linear system may be written in the form

Lk−1ek−1 = (
Jk−1

k Lk I k
k−1

)
ek−1 = Jk−1

k

(
Qk − Lkϕ

k
) = Qk−1. (4)

Thus, if Jk−1
k = (I k

k−1)
∗, then

Lk−1 = (
I k
k−1

)∗
Lk I k

k−1 (5)

is symmetric. Equation (5) is typically referred to as the variational definition of the coarse-
grid operatorLk−1.

It is common practice to employ a bilinear finite element basis for both the test and
trial spaces in problems of linear diffusion; therefore, bilinear interpolation seems natu-
ral for I k

k−1. However, bilinear interpolation does not yield an efficient multigrid solver
for many practical applications in which the permeability (or components of the perme-
ability tensor) varies discontinuously by orders of magnitude. In these cases one must
employ an alternative interpolation scheme, such as theoperator-induced interpolationof
Dendy [24].

2.2. The Stencil and Coarse-Grid Operators

Operator-induced variational coarsening was introduced in [23] as a robust means of
defining a complete set of coarse-grid and intergrid transfer operators based solely on
the fine-grid discrete operatorLh. In essence, operator-induced coarsening is variational
coarsening with the interpolation operator,I k

k−1, defined in terms of the discrete operatorLk.
Thus, we first introduce the compass-based notation of Fig. 2a as a means of conveniently
describing a 9-point stencil centered at a point (i, j ) on grid k. However, because the
discrete operator is symmetric, the mesh itself may be viewed as an undirected graph
(missing diagonal edges for a 9-point stencil, complete for the standard 5-point stencil) of
the corresponding matrix. Thus, it is only necessary to store five stencil weights for a 9-point
stencil and three for a 5-point. Dendy [24] chose to employ a cell-based definition of these
five weights (Fig. 3), so that the 9-point stencil takes the form shown in Fig. 2b. Note that
this black box multigrid code explicitly includes the negative sign that is generally present
in the eight neighboring stencil weights.
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FIG. 2. (a) A compass-based definition of an arbitrary 9-point stencil. (b) A 9-point symmetric stencil defined
using a cell-based nomenclature.

To define the interpolation operator, we first note that coarse-grid points that are contained
in the fine grid are simply interpolated by injection:

(
I k
k−1ψ

k−1
)

i, j
= ψk−1

ic, jc.

Another special case is horizontal lines of the coarse grid embedded in the fine grid. In
this case, the primary objective is to perform piecewise linear interpolation in a manner
that enforces the continuity of the normal flux and yet only uses information from the
fine-grid stencil. Specifically, it may be shown (see Appendix B) that collapsing the stencil
components vertically generates the interpolation(

I k
k−1ψ

k−1
)

i, j
=

(
S̃O

W(k)

i, j ψk−1
ic, jc + S̃O

W(k)

i +1, j ψ
k−1
ic+1, jc

)/
S̃O

O(k)

i, j , (6)

where the interpolation weights,

S̃O
W(k)

i, j = SOW(k)
i, j + SOSW(k)

i, j + SON W(k)
i, j +1 ,

S̃O
O(k)

i, j = SOO(k)
i, j − SOS(k)

i, j − SOS(k)
i, j +1,

approximate this continuity condition.
An analogous treatment is employed for the vertical lines embedded in the fine grid.

Finally, all that remains are fine-grid points that are centered in coarse-grid cells. In this
case, the fine-grid stencil is readily inverted, because all eight neighboring corrections have

FIG. 3. The cell-based unique stencil weight definitions adopted in [24].
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FIG. 4. Thelocal flux analysis approximates: (a) thex-component of the flux and (b) they-component of the
flux, through the cell using the stencil weights.

already been evaluated:(
I k
k−1ψ

k−1
)

i +1, j +1 = {
SOW(k)

i +1, j +1

(
I k
k−1ψ

k−1
)

i, j +1 + SOW(k)
i +2, j +1

(
I k
k−1ψ

k−1
)

i +2, j +1

+ SOS(k)
i +1, j +1

(
I k
k−1ψ

k−1
)

i +1, j
+ SOS(k)

i +1, j +2

(
I k
k−1ψ

k−1
)

i +1, j +2

+ SOSW(k)
i +1, j +1(ψ

k−1)ic, jc + SOSW(k)
i +2, j +2(ψ

k−1)ic+1, jc+1

+ SON W(k)
i +1, j +2(ψ

k−1)ic, jc+1 + SON W(k)
i +2, j +1(ψ

k−1)ic+1, jc
}/

SOO(k)
i +1, j +1.

(7)

Using this definition of the interpolation operator,I k
k−1, in the variational definition of the

coarse-grid operator,Lk−1, Eq. (5), yields a robust multigrid algorithm that requires only
the fine-grid stencil.

2.3. Extracting the Permeability Tensor

The objective of black box multigrid homogenization is to compute a constant 2× 2
permeability tensor for each cell of the desired computational grid (i.e., a coarse-scale grid).
However, the operator-induced coarsening of Dendy’s [24] black box multigrid produces the
coarse-grid discrete operator and not the permeability tensor. Thus, the underlying objective
is to develop alocal technique that extracts the cell-based permeability tensor from a coarse-
grid stencil. To accomplish this objective we analyze the flux passing through the cell-
centered coordinate axes shown in Fig. 4. This approach naturally relates the permeability
tensor to the stencil weights because the stencil itself may be viewed as a superposition of
fluxes. Specifically, we state the following theorem that we prove in Appendix A.

THEOREM2.1. Consider the primal conforming bilinear finite element discretization of
Eq.(1)withK(x, y) smooth,1 and subject to periodic boundary conditions on a rectangular

1Quadrature may be used to evaluate the elements of the stiffness matrix provided that it is sufficiently ac-
curate. If we assume a smooth permeability tensor, then the quadrature must integrate cubics exactly. Alterna-
tively, a piecewise constant sampling of the smooth permeability tensor(i.e.,K(x, y) = Ki + 1

2 , j + 1
2

for (x, y)

∈ Äi + 1
2 , j + 1

2
) may be used, in which case only quadratics need to be integrated exactly.
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domainÄ. In addition, assume a tensor-product grid with a constant grid spacing in each
coordinate direction that is denoted by(hx, hy). A second-order approximation of the
permeability tensorKi + 1

2 , j + 1
2

= K(xi + 1
2
, yj + 1

2
) is given by

K̂i + 1
2 , j + 1

2
=

 hx
hy

{SSE
i, j + SN E

i, j + SN W
i +1, j

} (
SN E

i, j − SN W
i +1, j

)
(
SN E

i, j − SN W
i +1, j

) hy
hx

{SSN
i, j + SN E

i, j + SN W
i +1, j

}
 , (8)

where we have defined

SSE
i, j = 1

2

(
SE

i, j + SE
i, j +1

)
,

SSN
i, j = 1

2

(
SN

i, j + SN
i +1, j

)
.

For a constant permeability tensor(i .e.,K(x, y) ≡ Ki + 1
2 , j + 1

2
∀(x, y) ∈ Ä), Eq. (8) is an

exact expression.

In the case of fine-scale periodic structures, it is well known that a two-scale asymptotic
analysis (i.e., denote the slow global scaler and the fast local scaleρ = r/ε, whereε > 0 is a
small parameter) to an expression for the homogenized permeabilityK̂(as) [3, 4]. Moreover,
it has been shown that̂K(as) is a constant and symmetric positive definite tensor that is
not, in general, an explicit function of̂K(ρ), but depends on specific solutions of the local
fine-scale problem

−∇ρ · [K(ρ)∇ρφ] = 0, (9)

for ρ ∈ F and withφ periodic onF .
Therefore to use operator-induced variational coarsening to perform an approximate

numerical multigrid homogenization of a fine-scale periodic permeability we must relate the
fine-scale discretization of Eq. (9), the results of the coarsening procedure, and Theorem 2.1.
These relations are summarized in the following theorem.

THEOREM2.2. Consider a9-point vertex-based consistent discretization of Eq.(9) over
Än (the n-times periodic extension of F for integer n> 3). Furthermore, assume a tensor-
product grid that has a constant grid spacing in each coordinate direction denoted by
(hx, hy). Applying operator-induced variational coarsening until the stencil at each point
on the coarse-grid is identical leads to a coarse-grid operator that is second-order cons-
istent with a constant coefficient elliptic PDE

−∇ρ · [
K̂(bb)∇ρφ

] = 0, (10)

with φ periodic onÄn. Moreover, the black box multigrid homogenized permeabilityK̂(bb)

is given by Eq.(8).

Proof. It is straightforward to show that the important properties of the fine-grid stencil,
namely, that it is conservative (i.e., zero sum) and symmetric, are preserved under operator-
induced variational coarsening. Furthermore, each point has an identical stencil, therefore,
periodicity implies the discretization is consistent with some constant-coefficient PDE.
Thus, the coarse-scale solution is smooth and moreover, its Taylor series expansion about
any vertex readily yields Eq. (10) witĥK(bb) given by Eq. (8).
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Although we focus on fine-scale periodic media in this preliminary investigation, the
ultimate objective is the efficient numerical homogenization of general fine-scale perme-
ability over a global domain subject to general boundary conditions. A two-scale asymptotic
analysis has been applied to nonuniformly periodic structures (i.e.,K(r,ρ) is a function of
both the slow and fast scales) revealing that, in general, the homogenized permeability will
vary on the slow scale [3, 4]. The unfortunate consequence of this spatial dependence is
that to characterize the homogenized permeability a continuum of local fine-scale elliptic
problems must be solved.

We are optimistic that the extension of multigrid numerical homogenization to general
fine-scale structures will provide an efficient and accurate numerical approximation of the
spatially dependent homogenized permeability tensor. The key components of this extension
are summarized in the following conjecture.

Conjecture2.1. Consider the conforming bilinear finite element stencil specified in
Theorem 2.1. Applying operator-induced variational coarsening until the desired coarse-
grid is reached leads to a coarse-grid operator that is consistent with an elliptic PDE of the
form

−∇ · [K̂(x, y)∇φ] = Q̂(x, y), (11)

where K̂(x, y) andQ̂(x, y) are piecewise constant(i.e., K̂(x, y) = K̂i + 1
2 , j + 1

2
∀(x, y)

∈ Äi + 1
2 , j + 1

2
). On interior cells an approximation of the piecewise homogenized permeability

tensor is given by Eq. (8).

Thus, the extension to nonperiodic problems requires a consistency relation such as that
of Conjecture 2.1, as well as the extension of Theorem 2.1 to incorporate nonperiodic
boundary conditions.

3. THE MULTIGRID HOMOGENIZATION ALGORITHM

3.1. The Periodic Case

To motivate the black box multigrid homogenization algorithm for the periodic case, we
briefly discuss the relevant grid configuration issues. Specifically, the implementation of
black box multigrid [25], and hence, the new homogenization code that was derived from
it, was simplified by the use of fictitious points. Thus, if we consider the physical domain
[x1, y1] × [xL+1, yM+1], periodicity requires

u(x1, y) = u(xL+1, y) ∀y ∈ (y1, yM+1)

u(x, y1) = u(x, yM+1) ∀x ∈ (x1, xL+1).

Consequently, a typicalL × M computational grid (Fig. 5) has thetop and right edges
composed of fictitious points. Furthermore, the smallest plausible grid is 3× 3. Thus, the
homogenization of a representative cell may be accomplished by choosing the physical
domain to be a 3× 3 tiling of the representative cell so that the coarsest grid is com-
posed of a 3× 3 tiling of homogenized cells. For example, consider the tiling shown in
Fig. 6a on which a 12×12 computational mesh is superimposed. After two coarsenings, the
computational mesh is only 3×3 and the domain may be viewed as a tiling of homogenized
cells (Fig. 6b). Note that the fictitious cells are displayed in lighter shades of gray.
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FIG. 5. A typical L × M computational mesh is shown for periodic boundary conditions with the point-wise
unknowns indicated by shaded circles. The entire(L + 2) × (M + 2) mesh employed byblack box multigrid
includes the fictitious points depicted as shaded squares.

This procedure is ideal, provided that the fine-scale structure of the problem may be
represented exactly on a 3· 2k−1 × 3 · 2k−1 mesh. However, if such a representation is
not possible, using an exact representation on the finest grid becomes problematic. To
clarify this point, consider vertical stripes on the representative cell(i.e., [0, 1] × [0, 1])

FIG. 6. (a) 12× 12 computational mesh is superimposed on a 3× 3 tiling of representative cells. (b) 3× 3
computational mesh on the coarsest grid. The domain is now composed of homogenized cells.
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FIG. 7. (a) A fine-grid (9× 9) representation of vertical stripes withµx = 1/3. (b) After one coarsening
a 5× 5 grid remains that is no longer consistent with the 3× 3 homogenized grid. In both cases the solid dots
represent grid points and the solid squares represent fictitious points.

defined by

K(x, y) =
{
KL , 0 < x < µx

KR, µx < x < 1
,

which, if µx = 1/3, may be represented exactly on the 9× 9 fine grid shown in Fig. 7a.
The first coarsening yields a 5× 5 mesh, destroying the internal periodicity (Fig. 7b).

A number of treatments may be proposed to circumvent this problem approximately;
however, because our objective is to investigate the potential of the multigrid homogeniza-
tion procedure, we restrict the fine-grid representation to 3·2k−1 ×3 ·2k−1 uniform meshes
and employ a cell-centered, point-wise sampling ofK(x, y). This restriction implies that the
black box multigrid homogenization of fine-grid structures that are not represented exactly
on this mesh should be defined by the limit of the sequence of diffusion tensors that arise
as the fine-scale mesh is refined (i.e., increasingk). It is anticipated that this sequence will
be first-order convergent, and this claim is demonstrated in Section 4.1.2. We summarize
this homogenization procedure in the following algorithm.

ALGORITHM 3.1. Black Box Multigrid Homogenization of Periodic Problems.

1. Construct the conforming bilinear FEM stencil for a3× 3 tiling of the representative
cell on a3 · 2k−1 × 3 · 2k−1 uniform fine grid.

2. Construct the coarse-grid operators with operator induced coarsening[25].
3. Based on Theorem2.2,computeK̂(bb) on the3 × 3 grid (i.e., the coarsest grid).
4. Is the fine-scale structure of the representative cell captured adequately on the fine

grid (i.e., either exactly or evidenced by satisfactory convergence ofK̂(bb))?
YES: the black box multigrid homogenized diffusion tensor≡ K̂(bb)

NO: increase k and goto1.

An alternative vertex-based approach is considered in [26, 27] which inverts a 9×9 system
that is defined over a group of four cells. These methods result in equivalent homogenized
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permeability tensors if the stencil is spatially constant, in which case it is natural to assume
that the four neighboring cells will have identical properties. However, in the general case
(Section 3.2), this assumption may be too restrictive, and therefore, we feel that a local
technique is preferable.

3.2. The General Case

The objective in the general case is somewhat different. Here it is assumed that a multiscale
diffusion problem is readily defined on a fine scale but that practical computations are limited
to a much coarser scale. Thus, we first note that Conjecture 2.1 applies on all interior cells.
Moreover, the extension of Theorem 2.1 to the case of homogeneous Neumann boundary
conditions is straightforward because these boundary conditions are the natural ones for the
variational formulation. Unfortunately, Dirichlet and mixed boundary conditions require
careful attention. These extensions are beyond the scope of this preliminary investigation;
hence, we propose the following algorithm for the general case but do not evaluate its
potential.

ALGORITHM 3.2. Black Box Multigrid Homogenization of General Problems.

1. Construct the conforming bilinear FEM stencil on a fine grid whose spacing corre-
sponds to the fine scale of the modeling problem

2. Construct the coarse-grid operators with operator-induced coarsening[24] so that
the coarsest grid is the desired computational grid.

3. (a) Based on Conjecture2.1,use Eq.(8) to computeK̂(bb)
i + 1

2 , j + 1
2

for all interior cells
on the coarsest grid.

(b) Based on the necessary extension of both Conjecture2.1and Theorem2.1compute
K̂(bb)

i + 1
2 , j + 1

2
for all boundary cells on the coarsest grid.

4. StoreK̂(bb)
i + 1

2 , j + 1
2

for future use.

4. NUMERICAL EXAMPLES

To explore the potential of the black box homogenization, we present numerical results
for several model problems that may be divided into two subsections. The first subsection
consists of the homogenization of a constant diffusivity (i.e., a fixed-point problem), var-
ious stripes (i.e., essentially one-dimensional problems), and the infamous checkerboard
problem. The second subsection discusses the examples of Bourgat [20] that focus on the
dependence of the permeability tensor on the shape and diffusivity of an interior inhomo-
geneity,Ä1 ⊂ Ä ≡ {[0, 1] × [0, 1]}.

4.1. A Progressive Test Suite

4.1.1. Constant Tensor

A domain having a constant permeability tensor may be viewed as the ultimate result of
a homogenization procedure for which no further homogenization is desired or possible.
Therefore, a constant permeability tensor must be a fixed point of the homogenization
operator,

Ki + 1
2 , j + 1

2
= Hbb(K(x, y)) = Hbb

(
Ki + 1

2 , j + 1
2

)
.
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In this case we know that the stencil is preserved under variational coarsening and that
by Theorem 2.1,̂Ki + 1

2 , j + 1
2

given by Eq. (8), is an exact expression. Therefore, a constant
permeability tensor is a fixed point of the black box homogenization operator. This claim
was also verified numerically with the black box code.

4.1.2. Stripes

Analytic homogenization results exist in one dimension making essentially one-dimensi-
onal problems (i.e., problems in which the diffusive process is completely decoupled inx
andy), the first logical step beyond the simple constant permeability tensor. Specifically, the
striped patterns shown in Figs. 8a and 8b are two-dimensional problems in which the material
structure is only one-dimensional. If in addition, the following diagonal permeability tensor
is defined,

K(x, y) =


[

α1 0
0 α2

]
∀(x, y) ∈ Ä0[

β1 0
0 β2

]
∀(x, y) ∈ Ä1

,

then the permeability process is completely decoupled inx and y. Therefore, based on a
one-dimensional analysis, the homogenized permeability tensor for the vertical stripes of
Fig. 8a may be written

K̂ =
 α1β1

(1−µx)α1+µxβ1
0

0 µxα2 + (1 − µx)β2

 (12)

FIG. 8. Vertical and horizontal stripes.
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TABLE 1

A Sequence of Homogenized Permeability Tensors Obtained with Progressively Finer

Uniform Grids for Vertical Stripes with µx = 1/3,α1 =α2 = 3, andβ1 =β2 = 50

Fine Grid K̂(x,x)

bb

∣∣K(x,x) − K̂(x,x)

bb

∣∣ K̂(y,y)

bb

∣∣K(y,y) − K̂(y,y)

bb

∣∣
12× 12 10.1695 2.13379 38.2500 3.9167
24× 24 7.27273 0.76298 32.3750 1.9583
48× 48 8.48057 0.44486 35.3125 0.9792
96× 96 7.88034 0.20537 33.8437 0.4896

192× 192 8.14249 0.10678 34.5781 0.2448
384× 384 7.98337 0.05234 34.2109 0.1224
768× 768 8.06215 0.02644 34.3945 0.0612

while for the horizontal stripes of Fig. 8b it becomes

K̂ =
[

µyα1 + (1 − µy)β1 0

0 α2β2

(1−µy)α2+µyβ2

]
. (13)

Recalling that operator-induced interpolation is constructed in terms of transverse aver-
aged stencil coefficients to ensure continuity of the normal current, we expect to solve these
essentially one-dimensional problems exactly. Indeed this expectation is correct, provided
that

µx = i 2−k, µy = i 2−k, (14)

wherei, k are positive integers andi ≤ k. This choice ofµx andµy ensures that a uniform
fine grid exists that not only represents the stripes exactly but also when coarsened uses the
same coarse mesh in each homogenized cell (see Section 3.1). In the case of stripes that
violate Eq. (14), we define the homogenized tensor as the limit of the sequence of multigrid
homogenized tensors that is generated by considering successivelyfinerfine-grid problems.

For example, consider vertical stripes withµx = 1/3, α1 = α2 = 3, andβ1 = β2 = 50 for
which the corresponding sequence of black box multigrid homogenized tensors is pre-
sented in Table 1. The exact homogenized permeability tensor is readily obtained from
Eq. (12),

K̂ =
[

225
28 0

0 103
3

]
=

[
8.0357 0

0 34.3333

]
, (15)

and was used to compute the errors that appear in Table 1. It is apparent from the errors that
this procedure is first-order convergent.

4.1.3. Checkerboard

The checkerboard (Fig. 9) is one possible representation of a granular mixture such as sand
with Ä0 denoting the grains of sand andÄ1 denoting the intergranular space. Although this
is a truly two-dimensional problem, the exact solution is well known for isotropic diagonal
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FIG. 9. The checkerboard.

tensors [4]. Specifically, withK(x, y) defined by

K(x, y) =
{

α · I2 ∀(x, y) ∈ Ä0,

β · I2 ∀(x, y) ∈ Ä1,

whereI2 is the 2× 2 identity matrix. The homogenized permeability tensor is

K̂ =
√

αβ · I2.

A computation to evaluate the black box homogenized permeability tensor was performed
with the unfortunate result:

K̂(bb) = 1

2
(α + β) · I2.

It is not difficult to trace this error to its source, although it is likely nontrivial to correct it.
In particular, the interpolation operator is obtained by first averaging the stencil in eitherx or
y to define the required one-dimensional interpolation problems. This averaging necessarily
defines an interpolation operator consistent with a medium having constant diffusivity given
by the arithmetic mean ofα andβ. Moreover, takingβ = 1/α reveals that the corresponding
error is unbounded. At this time, it is not known how to alleviate this problem by altering
the operator-induced interpolation in a manner that still preserves the 9-point, symmetric,
conservative stencils under variational coarsening.

4.2. Bourgat’s Examples

4.2.1. Shape Dependence

An evaluation of the geometric dependence of the homogenized permeability tensor is
demonstrated with three basic shapes: square, disk, and lozenge (i.e., rotated square), which
are shown in Figs. 10a–c. The permeability tensor of these representative cells is defined
by

K(x, y) =
{

1 · I2 ∀(x, y) ∈ Ä0

10 · I2 ∀(x, y) ∈ Ä1
.
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FIG. 10. Three inhomogeneities with an area of 1/4, but different shapes.

In all cases, the area ofÄ1 is 1/4. Moreover, symmetry ensures that the homogenized
permeability tensor will also be a scalar multiple of the identity. This property was ver-
ified to hold for our numerical algorithm, and the results are displayed in Table 2. A
comparison of the results that we obtained with a 768× 768 fine grid and those found
in [20] is summarized in Table 3, where percentage differences, relative to the square
inhomogeneity, are also included. These results demonstrate that the relative sensitivity
of black boxhomogenization is similar to the rigorous treatment of Bourgat. In a di-
rect comparison the black box results consistently overestimate the asymptotic value by
approximately 2–3%. This result is quite impressive when a commonly employed alter-
native such as the two-dimensional harmonic average not only underestimates the asymp-
totic value by approximately 17% but also is independent of the shape of the internal
inhomogeneity.

4.2.2. Dependence on the Relative Diffusivity

In this example, we consider a square inhomogeneity (Fig. 11) defined by

K(x, y) =
{

1 · I2 ∀(x, y) ∈ Ä0

λ · I2 ∀(x, y) ∈ Ä1
,

TABLE 2

A Sequence of Homogenized Permeability Tensors Obtained with Progres-

sively Finer Meshes for the Three Representative Cells Shown in Fig. 10

Fine grid Square Disk Lozenge

12× 12 1.5979 1.5979 1.5979
24× 24 1.5979 1.5979 1.4182
48× 48 1.5979 1.5495 1.5629
96× 96 1.5979 1.5797 1.6354

192× 192 1.5979 1.5676 1.6015
384× 384 1.5979 1.5673 1.6175
768× 768 1.5979 1.5631 1.6079
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TABLE 3

Shape Dependence of the Diffusivity, Relative to the Square (i.e., the Per-

centage of Relative Difference—%RD) Is Presented for the Results of Bourgat

[20] and Black BoxHomogenization

Shape Bourgat % RD Black box % RD

Square 1.548 — 1.598 —
Disk 1.516 −2.06 1.563 −2.19
Lozenge 1.573 +1.69 1.608 +0.63

to evaluate the dependence of the homogenized permeability tensor on the parameterλ.
Symmetry once again guarantees that the homogenized permeability tensor is also a scalar
multiple of the identity. Unfortunately, the structure ofÄ1 cannot be described exactly on
a uniform 3· 2k−1 × 3 · 2k−1 grid, wherek is a positive integer. As a result, for eachλ we
obtain a convergent sequence of permeability tensors. A sample computation withλ = 10
is summarized in Table 4. For purposes of comparison, we use the results of the finest grid
displayed in Fig. 12. Also appearing in Fig. 12 are the results of Bourgat [20] as well as the
commonly used means,

K̂(am) =
∫ 1

0

∫ 1

0
K(x, y) dx dy= 1

9
(λ + 8) · I2,

K̂(hm) =
[ ∫ 1

0

∫ 1

0
[K(x, y)]−1dx dy

]−1

= 9λ

(1 + 8λ)
· I2.

We note the excellent agreement of the black box homogenized permeability coefficient
with the asymptotic results over eight orders of magnitude inλ. We also observe that the
catastrophic failure of the harmonic mean asλ → 0+ is in contrast with an overestimation
of approximately 10% in the arithmetic mean. Moreover, asλ → +∞, the harmonic mean
yields approximately a 10% underestimation, while the arithmetic mean grows linearly,
displaying an arbitrarily large error.

FIG. 11. A square inhomogeneity with diffusivityλ and an area of 1/9.
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TABLE 4

A Sequence of Homogenized Permeability Ten-

sors Obtained with Progressively Finer Meshes for

the Inhomogeneity Shown in Fig. 11 withλ = 10

Fine grid K̂(x,x)

bb = K̂(y,y)

bb

12× 12 1.5979
24× 24 1.1243
48× 48 1.2897
96× 96 1.1934

192× 192 1.2372
384× 384 1.2143
768× 768 1.2254

4.2.3. A Dense Homogenized Permeability Tensor

To demonstrate that an isotropic inhomogeneity may lead to a dense tensor, Bourgat [20]
considered the L-shaped region shown in Fig. 13, with the permeability tensor

K(x, y) =
{

1 · I2 ∀(x, y) ∈ Ä0

10 · I2 ∀(x, y) ∈ Ä1
.

The asymptotic computation of Bourgat gives,

K̂(as) =
[

1.915 −0.101
−0.101 1.915

]
= Q

[
2.016 0

0 1.814

]
QT ,

FIG. 12. Dependence of homogenized diffusivities on the relative diffusivityλ.
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FIG. 13. The homogenization of an L-shaped inhomogeneity leads to a dense tensor.

where the matrix of eigenvectorsQ is given by

Q = 1√
2

[−1 1
1 1

]
.

Q defines the principal axes of diffusion, in this case a rotation of 45◦.
Black box homogenization also gives a full tensor; specifically, for a 768× 768 fine grid

(Table 5) we have

K̂(bb) =
[

1.959 −0.153
−0.153 1.959

]
= Q

[
2.113 0

0 1.806

]
QT .

Moreover, we remarkably obtain the exact principal axes of diffusion in this case. The only
error is the scaling in each of these directions, approximately 5% and 0.4%, respectively.

5. CONCLUSIONS

An efficient and accurate homogenization procedure suitable for a broad class of multi-
scale diffusion problems is essential and yet was previously unavailable. To this end, we

TABLE 5

A Sequence of Homogenized Permeability Tensors Ob-

tained with Progressively Finer Meshes for the L-Shaped

Inhomogeneity Shown in Fig. 13

Fine grid K̂(x,x)

bb = K̂(y,y)

bb K̂(x,y)

bb

12× 12 1.4972 −0.08527
24× 24 2.3766 −0.17604
48× 48 1.8280 −0.14011
96× 96 2.0515 −0.15881

192× 192 1.9316 −0.15094
384× 384 1.9887 −0.15519
768× 768 1.9594 −0.15317



                 

100 MOULTON, DENDY, AND HYMAN

hypothesized that the robustness of Dendy’s black box multigrid codes [24, 25] implied that
the corresponding coarse-grid operators were accurate approximations of the true coarse-
scale operators and, therefore, that the operator-induced coarsening intrinsically provided
an efficient discrete multilevel homogenization procedure. Thus, we developed a local
expression (Theorem 2.1, Eq. (8)) which through Algorithm 3.1 defines the black box
multigrid approximation of the homogenized permeability tensor.

In the numerical tests of Section 4.2 we compared this new multilevel homogenization
procedure with several examples from Bourgat’s [20] numerical study. The results of these
tests are very encouraging. In particular, the multigrid homogenized permeability tensor
displayed the correct relative dependence on the shape of the internal inhomogeneity, a
dependence missed entirely by the simple averages. The new technique also demonstrated
an impressive accuracy over eight orders of magnitude in the relative diffusivity of a square
inhomogeneity. Finally, the multigrid homogenization algorithm demonstrated that it can
capture coarse-scale anisotropic permeability even when it arises from a fine-scale problem
with isotropic permeability. Moreover, in this case the approximated permeability tensor
defined the exact principal axes of diffusion with errors of 0.4% and 5% in the corresponding
eigenvalues. Unfortunately, this new technique is not infallible, yielding the arithmetic mean
in the case of a checkerboard problem. We feel that this is an isolated problem and are
optimistic that we can prove that this is the only pathological example. In practice, a known
pathology such as this may be circumvented, although ultimately we hope to rectify this
problem by improving the operator-induced coarsening procedure. Hence, we are excited
that research in this vein may indirectly lead to improvements in the black box code itself.

Based on these preliminary results, we are very interested in extending this work to
the general case. Thus, we will be investigating the potential of Algorithm 3.2 through its
application to both contrived and real world diffusive modeling problems.

APPENDIX A: PROOF OF THEOREM 2.1

A.1. A Second-Order Approximation

A local flux analysis is used to construct approximations to thex andy components of
the flux at the cell center(xi + 1

2
, yj + 1

2
) by considering the contributions from each of thesix

stencil weights. In particular, we write

F (x)

i + 1
2 , j + 1

2
= F E

i + 1
2 , j + 1

2
+ FN E(x)

i + 1
2 , j + 1

2
+ FN W(x)

i + 1
2 , j + 1

2
,

F (y)

i + 1
2 , j + 1

2
= FN

i + 1
2 , j + 1

2
+ FN E(y)

i + 1
2 , j + 1

2
+ FN W(y)

i + 1
2 , j + 1

2
,

whereF (x)

i + 1
2 , j + 1

2
is an approximation of thex-component of the flux at(xi + 1

2
, yj + 1

2
), and

F E
i + 1

2 , j + 1
2
,FN E(x)

i + 1
2 , j + 1

2
, andFN W(x)

i + 1
2 , j + 1

2
denote the contributions from their respective stencil

connections. Analogous definitions apply to they-component.
To facilitate this analysis, we first develop the notation and coordinate systems required

by these unknowns. Specifically, the evaluation of the flux at the cell center requires the
partial derivatives of the solution,

(
ph

x

)
i + 1

2 , j + 1
2

= ph
x

∣∣
sx

i + 1
2
,y

j + 1
2 d

,
(

ph
y

)
i + 1

2 , j + 1
2

= ph
y

∣∣
sx

i + 1
2
,y

j + 1
2 d

.
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For a 9-point conforming bilinear finite element stencilph
x(x, y) and ph

y(x, y) are linear
functions ofy andx, respectively, whose values at the cell center are

(
ph

x

)
i + 1

2 , j + 1
2

= 1

2[hx]
{(pi +1, j − pi, j ) + (pi +1, j +1 − pi, j +1)},

(
ph

y

)
i + 1

2 , j + 1
2

= 1

2[hy]
{(pi, j +1 − pi, j ) + (pi +1, j +1 − pi +1, j )}.

Thus, making the additional assumption that theeast/weststencil weights are approxi-
mately constant functions ofy, we obtain

F E
i + 1

2 , j + 1
2

≈ 1

hy
SSE

i, j

[(
ph

x

)
i + 1

2 , j + 1
2
hx

]
= hx

hy
SSE

i, j

(
ph

x

)
i + 1

2 , j + 1
2
.

Similarly, assuming that thenorth/southweights are approximately constant functions ofx
gives

FN
i + 1

2 , j + 1
2

≈ 1

hx
SSN

i, j

[(
ph

y

)
i + 1

2 , j + 1
2
hy

]
= hy

hx
SSN

i, j

(
ph

y

)
i + 1

2 , j + 1
2
.

The error associated with these expressions isO(h2) and, in particular, averaging the
stencil coefficients is a second-order approximation. Averaging the fluxes directly would
also provide anO(h2) approximation and differs from the above expressions only in the
higher order terms,

1

4

[(
SE

i, j − SE
i, j +1

)](
ph

xy

)
i + 1

2 , j + 1
2
hx hy,

1

4

[(
SN

i, j − SN
i +1, j

)](
ph

xy

)
i + 1

2 , j + 1
2

hx hy,

respectively.
To extend this approach to the diagonal stencil weights, we introduce two rotated coor-

dinate systems. The first, with coordinates(ξ1, η1) is shown in Fig. 14a and hasξ1 aligned
with thenortheastdiagonal of the cell. Thus, it has been rotated counterclockwise by an
angle,θ = tan−1(hy/hx) and is related to (x, y) by the simple transformation,[

x − xi + 1
2

y − yj + 1
2

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
ξ1

η1

]
. (16)

The second coordinate system,(ξ2, η2), shown in Fig. 14b, has been rotated counterclock-
wise by (π/2 − θ) to alignη2 with the northwestdiagonal of the cell. The coordinates
(ξ2, η2) are related to (x, y) by the simple transformation,[

x − xi + 1
2

y − yj + 1
2

]
=

[
sin(θ) −cos(θ)

cos(θ) sin(θ)

] [
ξ2

η2

]
. (17)

These coordinate systems are identical ifhx = hy.
To approximate the fluxes, we first define the derivatives along the cell diagonals,(

ph
ξ1

)
i + 1

2 , j + 1
2

= ph
ξ1

∣∣
sx

i + 1
2
,y

j + 1
2 d

,
(

ph
η2

)
i + 1

2 , j + 1
2

= ph
η2

∣∣
sx

i + 1
2
,y

j + 1
2 d

.



                   

102 MOULTON, DENDY, AND HYMAN

FIG. 14. Rotated coordinate systems: (a)(ξ1, η1) hasξ1 aligned with thenortheastdiagonal of the cell, while
(b) (ξ2, η2) hasη2 aligned with thenorthwestdiagonal.

For a piecewise bilinear basis we have

(
ph

ξ1

)
i + 1

2 , j + 1
2

= 1

hξ1
(pi +1, j +1 − pi, j ) ,

(
ph

η1

)
i + 1

2 , j + 1
2

= 1

hη2
(pi, j +1 − pi +1, j ) .

The cosine foreshortening of the interface as seen along the cell diagonals is depicted, for
all four cases, in Fig. 15. Therefore, from Fig. 15 we have

FN E(x)

i + 1
2 , j + 1

2
=

SN E
i, j

[(
ph

ξ1

)
i + 1

2 , j + 1
2
hξ1

]
[hycos(θ)]

(ξ1 · x)

= hx

hycos(θ)
SN E

i, j

[
cos(θ)

(
ph

x

)
i + 1

2 , j + 1
2
+ sin(θ)

(
ph

y

)
i + 1

2 , j + 1
2

]
= hx

hy
SN E

i, j

(
ph

x

)
i + 1

2 , j + 1
2
+ SN E

i, j

(
ph

y

)
i + 1

2 , j + 1
2
,

and similarly,

FN W(x)

i + 1
2 , j + 1

2
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SN W
i +1, j

[(
ph

η2

)
i + 1

2 , j + 1
2
hη2

]
[hycos(θ)]
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= − hx

hycos(θ)
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−cos(θ)
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+ sin(θ)
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FIG. 15. Cosine foreshortening.

The evaluation ofFN E(y)

i + 1
2 , j + 1

2
andFN W(y)

i + 1
2 , j + 1

2
follows analogously to yield

F (x)

i + 1
2 , j + 1

2

F (y)

i + 1
2 , j + 1

2


=

 hx
hy

{SSE
i, j + SN E

i, j + SN W
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} (
SN E

i, j − SN W
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)
(
SN E

i, j − SN W
i +1, j

) hy
hx

{SSN
i, j + SN E

i, j + SN W
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}
(

ph
x

)
i + 1

2 , j + 1
2(

ph
y

)
i + 1

2 , j + 1
2

 .

Direct comparison with the definition of anisotropic diffusion yields the permeability tensor
K̂i + 1

2 , j + 1
2

given in Eq. (8).

A.2. An Exact Expression

We first assume that the permeability tensor is constant inÄ and is written

K(x, y) ≡ K = Ki + 1
2 , j + 1

2
=

[
K(x,x) K(x,y)

K(x,y) K(y,y)

]
,
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so that the bilinear conforming finite element stencil weights are given by

SE
i, j = 2

3

hy

hx
K(x,x) − 1

3

hx

hy
K(y,y),

SN
i, j = −1

3

hy

hx
K(x,x) + 2

3

hx

hy
K(y,y),

SN E
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6

hy

hx
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6

hx

hy
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2
K(x,y),

SN W
i, j = 1

6

hy

hx
K(x,x) + 1

6

hx

hy
K(y,y) − 1

2
K(x,y).

Substitution into Eq. (8) immediately giveŝKi + 1
2 , j + 1

2
= Ki + 1

2 , j + 1
2
.

APPENDIX B: INTERPOLATION

The order of the transfer operators in an efficient multigrid method must satisfy the
well-known inequality

mi + mr > 2m,

wheremi andmr are the order of the interpolation and the restriction, respectively, and
2m is the order of the PDE (see, e.g., [30, 31, 32]). If this condition is satisfied then
variational coarsening generates coarse-grid operators that are relatively consistent [30],
and typically consistent with the original PDE. However, if this condition is not satisfied,
then an inconsistent coarse-grid discretization may arise and the multigrid method may
be suboptimal. This result is demonstrated by de Zeeuw [33] for a constant coefficient
second-order PDE.

Unfortunately, the situation for Eq. (1) with highly discontinuous permeability is more
complicated because the regularity of the solution depends on the fine-scale structure of the
permeability. Specifically, the gradient of the pressure may be discontinuous, in general, and
it is the continuity of the normal flux (velocity) that must be preserved in the interpolation.
In the following discussion we derive Dendy’s [24] operator-induced interpolation and
comment on its order of accuracy.

B.1. Fine Grid Stencil

In analogy with Appendix A, we adopt a flux-based analysis to derive Dendy’s operator-
induced interpolation [24]. Specifically, consider a fine-grid point that is embedded in a
horizontal coarse-grid line (Fig. 16a). In this case we approximately enforce the continuity
of the normal flux through the vertical face shown in Fig. 16. To simplify the notation we
use (i, j ) to index vertices and (k, l ) to index cells(i .e., k = i + 1

2, l = j + 1
2).

To derive the interpolation we consider preserving the continuity of the normal flux in a
weak or integral sense,

lim
x→x−

∫ yj +1

yj −1

(F · x) dy = lim
x→x+

∫ yj +1

yj −1

(F · x) dy . (18)

The contributions from each of the neighboring cells are defined by

(F · x)
x+

i
k,l = lim

x→x+

∫ yj +1

yj −1

(F · x) dy, (19)
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FIG. 16. (a) Interpolate the fine-grid point, “d,” from the coarse-grid points, “j.” (b) The objective is to
preserve the continuity of the normal flux through the vertical interface atxi (i.e., the shaded region).

with analogous definitions for the other cells. The continuity condition equation (18) can
now be written in the form

(F · x)
x−

i
k−1,l + (F · x)

x−
i

k−1,l−1 = (F · x)
x+

i
k,l + (F · x)

x+
i

k,l−1. (20)

Following the approach of Appendix A we decompose each term in Eq. (20) into its
stencil-based contributions; for example,

(F · x)
x+

i
k,l = hyl

[
F E

k,l + FN E(x)
k,l + FSE(x)

k,l

]
. (21)

It is our objective to construct the interpolation weights from a single stencil. Thus we have

F E
k,l = 1

hyl

{
SE

i, j

[
(px)

k,l
i, j hxk

]}
(22a)

FN E(x)
k,l = 1

hyl

{
SN E

i, j

[
(px)

k,l
i, j hxk

] + SN E
i, j

[
(py)

k,l
i, j hyl

]}
(22b)

FSE(x)
k,l = 1

hyl

{
SSE

i, j

[
(px)

k,l
i, j hxk

] + SSE
i, j

[
(py)

k,l
i, j hyk

]}
. (22c)

Substitution of Eqs. (22) into Eq. (20), along with analogous expressions for the other terms,
yields a stencil-based continuity condition,(

SW
i, j + SN W

i, j + SSW
i, j

)[
(px)

k−1,l
i, j hxk−1 + (px)

k−1,l−1
i, j hxk−1

]
+ (

SSW
i, j − SN W

i, j

)[
(py)

k−1,l
i, j hyl + (py)

k−1,l−1
i, j hyl−1

]
= (

SE
i, j + SN E

i, j + SSE
i, j

)[
(px)

k,l
i, j hxk + (px)

k,l−1
i, j hxk

]
+ (

SN E
i, j − SSE

i, j

)[
(py)

k,l
i, j hyl + (py)

k,l−1
i, j hyl−1

]
. (23)
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Unfortunately, incorporating they-derivative into the interpolation is precluded by the
desire to limit all coarse-grid operators to be 9-point operators. Thus, we assume that these
terms are small, and hence, neglecting them we obtain

(
SW

i, j + SN W
i, j + SSW

i, j

)[
(px)

k−1,l
i, j + (px)

k−1,l−1
i, j

]
hxk−1

= (
SE

i, j + SN E
i, j + SSE

i, j

)[
(px)

k,l
i, j + (px)

k,l−1
i, j

]
hxk.

(24)

Substitution of the one-sided differences

(px)
x+

i
i, j = (px)

k,l
i, j = (px)

k,l−1
i, j = 1

hxk

(
ph

i +1, j − ph
i, j

)
(px)

x−
i

i, j = (px)
k−1,l
i, j = (px)

k−1,l−1
i, j = 1

hxk−1

(
ph

i, j − ph
i −1, j

)
into Eq. (24) yields

(
SW

i, j + SE
i, j + SN W

i, j + SSW
i, j + SN E

i, j + SSE
i, j

)
ph

i, j
(25)

= (
SW

i, j + SN W
i, j + SSW

i, j

)
ph

i −1, j + (
SE

i, j + SN E
i, j + SSE

i, j

)
ph

i +1, j .

Recalling thatSO
i, j = ∑

∗6=O S∗
i, j and switching to Dendy’s cell-based symmetric notation

reveals that Eq. (25) prescribes interpolation weights that are identical to those in Eq. (6).

B.2. The Order of Interpolation

To investigate the order of operator-induced interpolation we examine the approximation
of the continuity condition that results from a specific fine-grid stencil. Specifically, consider
a conforming bilinear finite element discretization of Eq. (1) with a piecewise constant
diagonal permeability tensor

K(x, y) = Kk,l =
[
K(x,x)

k,l 0

0 K(y,y)
k,l

]

for all (x, y) ∈ Fk,l . Substitution of the stencil weights into Eq. (24) yields the continuity
condition

{
K(x,x)

k−1,l hyl +K(x,x)
k−1,l−1hyl−1

}
(px)

x−
i

i, j = {
K(x,x)

k,l hyl +K(x,x)
k,l−1hyl−1

}
(px)

x+
i

i, j (26)

with first-order one-sided difference approximations of(px)
x−

i
i, j and(px)

x+
i

i, j .
This flux continuity condition incorporates an arithmetic treatment ofK(x,x)(x, y) in the

y-direction (i.e., parallel to the vertical interface) and enforces the continuity of the normal
flux across the vertical interface. Therefore, if thelocal structure ofK(x, y) is either a
horizontal or vertical interface the interpolation is second order. Unfortunately, estimating
the order of interpolation for more general interface configurations is extremely difficult
because the regularity of the solution depends on this property of the permeability.
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